Lubomir P. Markov

Professor of Mathematics

Lubomir P. Markov
Lubomir P. Markov Professor of Mathematics

Education

  • Ph.D. and M.A. in Mathematics, University of South Florida
  • B.A. in Mathematics, Sofia University

Biography

Office: Garner Hall 204

COURSES

  • Preparatory Mathematics I, III  (MAT 091, 095)
  • Precalculus for Business  (MAT 108)
  • Precalculus I and II  (MAT 109, 110)
  •  Calculus I, II, III  (MAT 211, 212, 213)
  • History and Philosophy of Science (MAT/PHY 240)
  • Advanced Calculus I and II  (MAT 310, 311)
  • Differential Equations  (MAT 314)
  • Introduction to Complex Analysis  (MAT 416)
  • Probability Theory  (MAT 451)
  • Undergraduate Math Seminar (MAT 487)

RESEARCH INTERESTS

  • Classical analysis and theory of functions
  • Number theory
  • Geometry of Banach and Hilbert spaces
  • Differential equations in abstract spaces
  • Euclidean geometry                                                                                                           

MEMBERSHIP IN PROFESSIONAL ORGANIZATIONS

  • American Mathematical Society
  • Union of Bulgarian Mathematicians
  • London Mathematical Society
  • Florida Academy of Sciences
  • Pi Mu Epsilon Honorary Society for Mathematics

SELECTED PUBLICATIONS

  • L. Markov, Two series which generalize Dirichlet’s Lambda and Riemann’s Zeta functions at integer arguments, Discrete Mathematics Letters 12 (2023), pp. 138 – 144
  • L. Markov, Two short proofs of the formula Σ 1/(2n+1)^2= π^2/8”, The Mathematical Gazette 106 (2022), pp. 28 – 31
  • L. Markov, A Cauchy-type generalization of Flett’s theorem, Demonstratio Math. 54 (2021), pp. 500-509
  • L. Markov, A functional expansion and a new set of rapidly converging series involving zeta values, Stud. Comput. Intelligence 793 (2019), Springer Verlag, pp. 267-276.    
  • L. Markov, Revisiting the infinite surface area of Gabriel’s horn, Forum Geometricorum 18 (2018), pp. 45 – 46.
  • L. Markov, Mean Value Theorems for analytic functions, Serdica Math. Journal 41 (2015), pp. 471-480.
  • Li Zhou and L. Markov, Recurrent proofs of the irrationality of certain trigonometric values,  American Math. Monthly 117 (2010), pp. 360 – 362.
  • L. Markov, Heronian triangles whose areas are integer multiples of their perimeters, Forum Geometricorum 7 (2007), pp. 114 – 121.

Sign in to use the pins